G6LBQ - HF BANDPASS FILTER
 $18^{\text {th }}$ March 2011

Introduction

The G6LBQ HF Bandpass Filter is a reproducible module based on the $3^{\text {rd }}$ Order Butterworth design using tunable pre wound inductors and covering all 9 of the current HF amateur radio bands.

The individual filters have a flat response in the passband and a steep roll off out of the designed pass bandwidth. As I am not lucky enough to own a spectrum analyser I can not provide plots of the actual filters performance but for those interested in the technicalities I have detailed my calculations used to produce each of the filters.

In the UK where I reside pre-wound tunable inductors have not been so easy to obtain in recent years especially with the demise of component suppliers like Cirkit Distribution who once stocked a whole range of the Toko coils which found there way into most home-brew radio projects. Whilst Toko are still a thriving company producing inductors, filters and transformers they ceased manufacturing the once popular Toko 10 mm coil ranges some time ago.

In my quest to source tunable inductors within the UK I was delighted to discover that a UK company Spectrum Communications had arranged the re-manufacture of the most popular 10 mm coils commonly used in home-brew radio and magazine projects. The Spectrum Communications 10 mm range are identical to the original Toko coils and on the Spectrum web site there is a detailed table outlining all the specifications for the coils.

> http://www.spectrumcomms.co.uk/Components.htm

The range of Toko style 10 mm coils available from Spectrum Communications is also stocked by the GQRP club.

TIP: You can often purchase quantities of surplus 10 mm Toko coils on Ebay very cheap. Though the coils may not be the ones you actually require with a little patience and using the chart on Spectrum Communications web site these can be stripped down and rewound to produce the coils needed.

With suitable coils available I set about doing some calculations to see how the Spectrum coils would adapt to the project and the next few pages show the calculations and subsequent node and coupling capacitors required to make the coils resonant and form the wanted filter bandwidths.

If you are not interested in the calculations skip forward to page 11 to see a list of coils and other components required to build the filter module.

Spectrum TOKO Coils For $3^{\text {rd }}$ Order Butterworth

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=\mathbf{0 . 7 0 7 1}$

160 Mtr Band

160Mtr Band with centre frequency of 1.9 Mhz
$\mathrm{BW}=0.35 \mathrm{Mhz}$ (This gives $247 \mathrm{Khz} @$-1db bandwidth)
Coil Choice Spectrum 9uh (28 Turns) Qu $70 \& \mathrm{AL}=11$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $1.9 \mathrm{Mhz}=107 \mathrm{Ohms}$
$2 \times$ PI x $1.9 \times 9=107$
Node capacitor that will resonate the 9 uh coil at $1.9 \mathrm{Mhz}=779.634 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=101.551 \mathrm{Pf}$ (so use 100 Pf)
Node capacitor therefore $779.634-101.551=678.038$ (so use 680 Pf)

Filter end section $\mathrm{Qe}=5.884$
($1 \times 1.9 \times 70$) / (0.35×70) - (1×1.9)
133 24.5-1.9
133 divided by $22.6=5.884$

The optimum I/O resistance with a filter end Q value of $5.884=632 \mathrm{ohms}$
$2 \times$ PI x $1.9 \times 9 \times 5.884=$ RP of 632
The IO coupling turns ratio at 632 ohms $=3.55$
Square root of $(632 / 50)=3.55$
Number of turns for I/O coupling $=7.88$
28 (Primary turns) / 3.55
The Link coil for the 9 uh therefore needs to be 8 turns (to nearest turn). NOTE the spectrum 9 u 0 h coil has only 5 turns on secondary!

- Spectrum Coils unloaded $\mathrm{Q}(\mathrm{Qu})=$ between 70 to 85 for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{K}=\mathbf{0 . 7 0 7 1}$

80 Mtr Band

80Mtr Band with centre frequency of 3.650 Mhz
$\mathrm{BW}=0.45 \mathrm{Mhz}$ (This gives $318 \mathrm{Khz} @-1 \mathrm{db}$ bandwidth)
Coil Choice Spectrum 5 u 3 (20 Turns) Qu $85 \& \mathrm{AL}=11$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $3.650 \mathrm{Mhz}=121 \mathrm{Ohms}$
$2 \times$ PI x $3.650 \times 5.3=121$
Node capacitor that will resonate the 5 u 3 coil at $3.650 \mathrm{Mhz}=358.739 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=31.274 \mathrm{Pf}$ (so use 33 Pf)
Node capacitor therefore $358.739-31.274=327.465$ (so use 330 Pf)

Filter end section $\mathrm{Qe}=8.959$
$(1 \times 3.65 \times 85) /(0.45 \times 85)-(1 \times 3.65)$
$310 \quad 38.25-3.65$
310 divided by $34.6=8.959$

The optimum I/O resistance with a filter end Q value of $8.959=1088$ ohms
$2 \times \mathrm{PI} \times 3.65 \times 5.3 \times 8.959=$ RP of 1088
The IO coupling turns ratio at 1088 ohms $=4.664$
Square root of $(1088 / 50)=4.664$
Number of turns for I/O coupling $=4.28$
20 (Primary turns) / 4.664
The Link coil for the 5 u 3 therefore needs to be 4 turns (to nearest turn). NOTE the spectrum 5 u 3 H coil has 4 turns so coil is good.

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

40 Mtr Band

40Mtr Band with centre frequency of 7.100 Mhz
$\mathrm{BW}=0.35 \mathrm{Mhz}$ (This gives $247 \mathrm{Khz} @$ - 1 db bandwidth)
Coil Choice Spectrum 2 u 6 (14 Turns) $\mathrm{Qu} 80 \& \mathrm{AL}=11$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $7.1 \mathrm{Mhz}=115 \mathrm{Ohms}$
$2 \times \operatorname{PIx} 7.1 \times 2.6=115$
Node capacitor that will resonate the 2 u 6 coil at $7.1 \mathrm{Mhz}=193.264 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=6.727 \mathrm{Pf}$ (so use 6.8 Pf)
Node capacitor therefore $193.264-6.8=186.464$ (so use 180pf)

Filter end section $\mathrm{Qe}=27.177$
$(1 \times 7.1 \times 80) /(0.35 \times 80)-(1 \times 7.1)$
568 28-7.1
568 divided by $20.9=27.177$

The optimum I/O resistance with a filter end Q value of $27.177=3152 \mathrm{ohms}$
$2 \times \operatorname{PI} \times 7.1 \times 2.6 \times 27.177=R P$ of 3152
The IO coupling turns ratio at 3152 ohms $=7.939$
Square root of $(3152 / 50)=7.939$
Number of turns for I/O coupling $=1.76$
14 (Primary turns) / 7.939
The Link coil for the 2 u 6 therefore needs to be 2 turns (to nearest turn). NOTE the spectrum 2 u 6 FC coil has 2 turns secondary so coil is good.

- Spectrum Coils unloaded $\mathrm{Q}(\mathrm{Qu})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

30 Mtr Band

30Mtr Band with centre frequency of 10.125 Mhz
$\mathrm{BW}=0.3 \mathrm{Mhz}$ (This gives 212 Khz @ -1 db bandwidth)
Coil Choice Spectrum 2 u6 (14 Turns) Qu 85
Inductive Reactance of the coil at $10.125 \mathrm{Mhz}=165 \mathrm{Ohms}$
$2 \times$ PI x $10.125 \times 2.6=165$
Node capacitor that will resonate the 2 u 6 coil at $10.125 \mathrm{Mhz}=95.034 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=1.524 \mathrm{Pf}$ (so use 1.5 Pf)
Node capacitor therefore $95.034-1.5=93.53$ (so use 100 Pf)

Filter end section $\mathrm{Qe}=55.934$
$(1 \times 10.125 \times 85) /(0.3 \times 85)-(1 \times 10.125)$
$860 \quad 25.5-10.125$
860 divided by $15.375=55.934$

The optimum I/O resistance with a filter end Q value of $55.934=9251$ ohms $2 \times$ PI x $10.125 \times 2.6 \times 55.934=R P$ of 9251

The IO coupling turns ratio at 9251 ohms $=13.60$
Square root of $(9251 / 50)=13.60$
Number of turns for I/O coupling $=1.029$
14 (Primary turns) / 13.90
The Link coil for the 2 u 6 therefore needs to be 1 turns (to nearest turn). NOTE the spectrum 2u6LC coil has 1 turns secondary so is good.

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

20 Mtr Band

20Mtr Band with centre frequency of 14.150 Mhz
$\mathrm{BW}=0.9 \mathrm{Mhz}$ (This gives $636 \mathrm{Khz} @$ - 1 db bandwidth)
Coil Choice Spectrum 1u2 (8 Turns) Qu $85 \& \mathrm{AL}=15$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $14.150 \mathrm{Mhz}=106 \mathrm{Ohms}$
$2 \times$ PI x $14.125 \times 1.2=106$
Node capacitor that will resonate the 1 u 2 coil at $14.150 \mathrm{Mhz}=105.426 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=4.741 \mathrm{Pf}$ (so use 4.7 Pf)
Node capacitor therefore $105.426-4.7=100.726$ (so use 100 pf)

Filter end section $\mathrm{Qe}=19.246$
$(1 \times 14.150 \times 85) /(0.9 \times 85)-(1 \times 14.150)$
1202 76.5 - 14.150
1202 divided by $62.35=19.278$

The optimum I/O resistance with a filter end Q value of $19.278=2056.7 \mathrm{ohms}$
$2 \times$ PI x $14.150 \times 1.2 \times 19.278=$ RP of 2056.7
The IO coupling turns ratio at 2056.7 ohms $=6.41$
Square root of (2056.7 / 50) $=6.41$
Number of turns for I/O coupling $=2.18$
14 (Primary turns) / 6.41
The Link coil for the 1 u 2 therefore needs to be 2 turns (to nearest turn). NOTE the spectrum 1u2H coil has 2 turns secondary so coil is good.

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

17 Mtr Band

17Mtr Band with centre frequency of 18.084 Mhz
$\mathrm{BW}=0.7 \mathrm{Mhz}$ (This gives $495 \mathrm{Khz} @$ - 1 db bandwidth)
Coil Choice Spectrum 1u2 (8 Turns) Qu $85 \& \mathrm{AL}=15$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $17.084 \mathrm{Mhz}=128 \mathrm{Ohms}$
$2 \times$ PI x $17.084 \times 1.2=128$
Node capacitor that will resonate the 1 u 2 coil at $18.084 \mathrm{Mhz}=64.546 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=1.767 \mathrm{Pf}$ (so use 1.8Pf)
Node capacitor therefore $64.546-2.2=62.346$ (so use 68pf)

Filter end section $\mathrm{Qe}=19.246$
($1 \times 18.084 \times 85$) / (0.7×85) - (1×18.084)
1537 59.5 - 18.084
1537 divided by $41.41=37.116$

The optimum I/O resistance with a filter end Q value of $37.116=4410$ ohms
$2 \times \operatorname{PI} \times 18.084 \times 1.2 \times 37.116=\mathrm{RP}$ of 5060
The IO coupling turns ratio at 5060 ohms $=10.06$
Square root of $(5060 / 50)=10.06$
Number of turns for I/O coupling $=0.79$
8 (Primary turns) / 10.06
The Link coil for the 1 u 2 therefore needs to be 1 turn (to nearest turn). NOTE the spectrum 1 u 2 H coil has 2 turns secondary so not ideal but there is only one 1.2 uh coil available.

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

15 Mtr Band

15Mtr Band with centre frequency of 21.225 Mhz
$\mathrm{BW}=1.0 \mathrm{Mhz}$ (This gives $707 \mathrm{Khz} @$ - 1 db bandwidth)
Coil Choice Spectrum 1u2 (8 Turns) Qu $85 \& \mathrm{AL}=15$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $21.225 \mathrm{Mhz}=160 \mathrm{Ohms}$
$2 \times \operatorname{PI} \times 21.225 \times 1.2=160$
Node capacitor that will resonate the 1 u 2 coil at $21.225 \mathrm{Mhz}=46.856 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=1.561 \mathrm{Pf}$ (so use 1.5 Pf)
Node capacitor therefore $46.856-2.2=44.656$ (so use 47 pf)

Filter end section $\mathrm{Qe}=19.246$
$(1 \times 21.225 \times 85) /(1.0 \times 85)-(1 \times 21.225)$
1804 - 85 - 21.225
1804 divided by $63.775=28.228$

The optimum I/O resistance with a filter end Q value of $28.286=4517$ ohms $2 \times$ PI x $21.225 \times 1.2 \times 28.228=$ RP of 4517

The IO coupling turns ratio at 4517 ohms $=9.504$
Square root of $(4517 / 50)=9.504$
Number of turns for I/O coupling $=0.84$
8 (Primary turns) / 9.504
The Link coil for the 1 u 2 therefore needs to be 1 turns (to nearest turn). NOTE the spectrum 1 u 2 H coil has 2 turns secondary so not ideal but there is only one 1.2 uh coil available.

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

12 Mtr Band

12Mtr Band with centre frequency of 24.940 Mhz
$\mathrm{BW}=1.0 \mathrm{Mhz}$ (This gives $707 \mathrm{Khz} @$ - 1 db bandwidth)
Coil Choice Spectrum 1u2 (8 Turns) Qu $85 \& \mathrm{AL}=15$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $24.940 \mathrm{Mhz}=188 \mathrm{Ohms}$
$2 \times \operatorname{PI} \times 24.940 \times 1.2=188$
Node capacitor that will resonate the 1 u 2 coil at $24.940 \mathrm{Mhz}=33.936 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=0.962$ Pf (so use 1Pf)
Node capacitor therefore $33.936-1=32.936$ (so use 33 pf)

Filter end section $\mathrm{Qe}=19.246$
$\left.\begin{array}{cc}(1 \times 24.940 \times 85\end{array}\right) /(1.0 \times 85)-(1 \times 24.940)$
2119.9 divided by $60.06=35.296$

The optimum I/O resistance with a filter end Q value of $35.296=6247$ ohms
$2 \times$ PI x $24.940 \times 1.2 \times 35.296=$ RP of 6637
The IO coupling turns ratio at 6637 ohms $=11.177$
Square root of $(6637 / 50)=11.521$
Number of turns for I/O coupling $=0.69$
8 (Primary turns) / 11.521
The Link coil for the 1 u 2 therefore needs to be 1 turns (to nearest turn). NOTE the spectrum 1 u 2 H coil has 2 turns secondary so not ideal but there is only one 1.2 uh coil available..

- Spectrum Coils unloaded $\mathbf{Q}(\mathbf{Q u})=$ between 70 to $\mathbf{8 5}$ for chosen models
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $\mathbf{Q}=1.0$
- $\mathbf{3}^{\text {rd }}$ Order Butterworth $K=0.7071$

10 Mtr Band

10Mtr Band with centre frequency of 28.850 Mhz
$\mathrm{BW}=3.5 \mathrm{Mhz}$ (This gives $2474 \mathrm{Khz} @$ - 1 db bandwidth)
Coil Choice Spectrum 1u2 (8 Turns) Qu $85 \& \mathrm{AL}=15$ (AL value as close as is possible to calc)
Inductive Reactance of the coil at $28.850 \mathrm{Mhz}=217 \mathrm{Ohms}$
$2 \times \operatorname{PI} \times 28.850 \times 1.2=217$
Node capacitor that will resonate the 1 u 2 coil at $28.850 \mathrm{Mhz}=25.361 \mathrm{Pf}$
Coupling capacitors between resonant circuits $=2.176 \mathrm{Pf}$ (so use 2.2 Pf)
Node capacitor therefore $25.361-2.2=23.161$ (so use 22 pf)

Filter end section $\mathrm{Qe}=19.246$
$(1 \times 28.850 \times 85) /(3.5 \times 85)-(1 \times 28.850)$ $2452 \quad 297.5-28.850$
2452 divided by $268.65=9.132$

The optimum I/O resistance with a filter end Q value of $9.132=1986 \mathrm{ohms}$
$2 \times \operatorname{PI} \times 28.850 \times 1.2 \times 9.132=R P$ of 1986
The IO coupling turns ratio at 1986 ohms $=6.30$
Square root of $(1986 / 50)=6.30$
Number of turns for I/O coupling $=1.2$
8 (Primary turns) / 6.30
The Link coil for the 1 u 2 therefore needs to be 2 turns (to nearest turn). NOTE the spectrum 1 u 2 H coil has 2 turns secondary so is good.

SPECTRUM COMMUNICATIONS/GQRP COIL LIST			
COIL VALUE		QUANTITY	PART NUMBER
9 Microhenries		3	9 u 0 H
5.3 Microhenries		3	5u3H
2.6 Microhenries		3	2u6Lc
2.6 Microhenries		3	2 u 6 Fc
1.2 Microhenries		15	1u2H
CAPACITORS All 5mm Pitch (see note at end of component list)			
VALUE	QTY	FOR BAND(S)	DESCRIPTION
100nf (0.1uf - 104)	27	N/A	Disc or Multi-Layer Ceramic
$10 n f(0.01 u f$ - 103)	2	N/A	Disc or Multi-Layer Ceramic
680PF	3	160	NPO Ceramic
100PF	8	160, 40, 20	NPO Ceramic
330PF	3	80	NPO Ceramic
33 PF	5	80, 12	NPO Ceramic
6.8PF (6P8)	2	40	NPO Ceramic
10PF	3	30	NPO Ceramic
1.5PF (1P5)	4	30, 15	NPO Ceramic
4.7PF (4P7)	2	20	NPO Ceramic
68 PF	3	17	NPO Ceramic
1.8PF (1P8)	2	17	NPO Ceramic
47 PF	3	15	NPO Ceramic
1PF	2	12	NPO Ceramic
22 PF	3	10	NPO ceramic
2.2PF	2	10	NPO ceramic

Please note that the Spectrum/GQRP 10mm coils 2 u 6 FC and 2 u 6 LC (as used for $40 \& 30 \mathrm{Mtrs}$) are supplied with an internal 82 PF capacitor fitted so the actual node capacitors we must add to these coils is the difference required to make up the total node value. Example: Say Node cap needs to be 92 PF and coil already has 82 PF internal we only need to fit 10 PF to our PCB to make up total 92 PF value.

FIXED RF INDUCTORS			
COIL VALUE		QUANTITY	PART NUMBER
$10 \mathrm{uh} \mathrm{or} \mathrm{47uh}$		2	Small axial chokes
RESISTORS (see note at end of component list)			
VALUE	QTY	COLOUR CODE	DESCRIPTION
390 OHMS 1/4 Watt	2	Orange, White, Brown	Carbon 1/4W Resistor
** 470 OHMS $1 / 4$ Watt	18	Yellow, Violet, Brown	Carbon 1/4W Resistor
** Only Use 470 Ohms when using BA243 switching diodes			
* 100 OHMS $1 / 4$ Watt	18	Brown, Black, Brown	Carbon 1/4W Resistor
* Only Use 100 Ohms when using 1N4148 high speed GP diodes			
DIODES (see note at end of component list)			
VALUE	QTY		DESCRIPTION
BA243	18		Band Switching Diodes
(Or use) 1N4148	18		GP switching Diode
MISCELLANEOUS			
VALUE	QTY		DESCRIPTION
PCB	1		Etch or buy from Sunil Lakhani

The above component list shows 470 Ohms and 100 Ohm resistors, you do not need both values. These resistors are used to bios the diode switches and depending on your choice of diodes this will dictate which resistor value to use.

BA243 diodes require 470 Ohm's and provide a little over 10ma forward bios.
1N4148 diodes require 100 Ohm and provide a little over 20ma forward bios.
The filter can utilise general switching diodes like the 1N4148 but the BA243 is designed as an RF switching diode so will be more linear with less spurious products so therefore a better choice.

There is a ready etched, screen printed, drilled and tinned PCB available for the bandpass filter from Sunil Lakhani but artwork is provided for those wishing to produce there own PCB.

Sunil has a web site with useful radio kits located at http://amateurradiokits.in/ and can also be contacted via email at: vu3sua@gmail.com

PCB READY FOR CONSTRUCTION

Whilst the PCB is designed to accommodate filters for all 9 HF bands it is not necessary to fit all the filter circuits, you could utilise the PCB to build any number of filters from just one band up to all nine. The PCB has various pre-drilled mounting holes so it is even possible to cut the PCB down in size if building a filter module for fewer bands.

A FULLY POPULATED PCB

The finished PCB shows the various band switching points and input/output signal connections. Note that the filter is symmetrical so the input/output connections can be wired as either input or output. Whilst not shown on the illustration a separate connection should be made between the filter PCB and the common -ve/ground point of the main receiver/transceiver PCB.

PCB COMPONENT OVERLAY

Use the following PCB overlay to assist in component locations on the PCB.

PAGE 16 Next table of components for $160 \mathrm{Mtr} \& 80 \mathrm{Mtr}$ filters with PCB/Schematic labels

COMPONENT LIST FOR 160 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D1	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D2	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R1	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R2	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C1	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C7	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C8	Disc or Multi-Layer Ceramic 5mm Pitch
680PF	C3	NPO Ceramic 5mm Pitch
680PF	C4	NPO Ceramic 5 mm Pitch
680PF	C6	NPO Ceramic 5mm Pitch
100PF	C2	NPO Ceramic 5mm Pitch
100PF	C5	NPO Ceramic 5mm Pitch
9 u 0 h	L1	10mm Toko style coil
9 u 0 h	L2	10mm Toko style coil
9 u 0 h	L3	10mm Toko style coil

COMPONENT LIST FOR 80 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D3	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D4	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R3	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R4	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C9	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C15	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C16	Disc or Multi-Layer Ceramic 5mm Pitch
330PF	C11	NPO Ceramic 5mm Pitch
330PF	C12	NPO Ceramic 5mm Pitch
330PF	C14	NPO Ceramic 5mm Pitch
33PF	C10	NPO Ceramic 5mm Pitch
33 PF	C13	NPO Ceramic 5mm Pitch
5u3h	L4	10 mm Toko style coil
5u3h	L5	10mm Toko style coil
5u3h	L6	10mm Toko style coil

PAGE 17 Next table of components for $40 \mathrm{Mtr} \& 30 \mathrm{Mtr}$ filters with PCB/Schematic labels

COMPONENT LIST FOR 40 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D5	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D6	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R5	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R6	Carbon 1/4W Resistor (see notes on page 12)
100 nf (0.1uf - 104)	C17	Disc or Multi-Layer Ceramic 5mm Pitch
$100 n f(0.1$ uf - 104)	C23	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C24	Disc or Multi-Layer Ceramic 5mm Pitch
180PF	C19	NPO Ceramic 5mm Pitch
180PF	C20	NPO Ceramic 5mm Pitch
180PF	C22	NPO Ceramic 5mm Pitch
6.8PF (6P8)	C18	NPO Ceramic 5mm Pitch
6.8PF (6P8)	C21	NPO Ceramic 5mm Pitch
2 u 6 FC	L7	10 mm Toko style coil
2u6FC	L8	10 mm Toko style coil
2u6FC	L9	10mm Toko style coil

COMPONENT LIST FOR 30 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D7	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D8	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R7	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R8	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C25	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C31	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C32	Disc or Multi-Layer Ceramic 5mm Pitch
100PF	C27	NPO Ceramic 5mm Pitch
100PF	C28	NPO Ceramic 5mm Pitch
100PF	C30	NPO Ceramic 5mm Pitch
1.5PF (1P5)	C26	NPO Ceramic 5mm Pitch
1.5PF (1P5)	C29	NPO Ceramic 5mm Pitch
2u6Lc	L10	10mm Toko style coil
2u6Lc	L11	10mm Toko style coil
2u6Lc	L12	10mm Toko style coil

PAGE 18 Next table of components for 20Mtr \& 17Mtr filters with PCB/Schematic labels

COMPONENT LIST FOR 20 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D9	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D10	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R9	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R10	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C33	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C39	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C40	Disc or Multi-Layer Ceramic 5mm Pitch
100PF	C35	NPO Ceramic 5mm Pitch
100PF	C36	NPO Ceramic 5 mm Pitch
100PF	C38	NPO Ceramic 5mm Pitch
4.7PF (4P7)	C34	NPO Ceramic 5mm Pitch
4.7PF (4P7)	C37	NPO Ceramic 5mm Pitch
1u2H	L13	10 mm Toko style coil
1u2H	L14	10mm Toko style coil
1u2H	L15	10mm Toko style coil

COMPONENT LIST FOR 17 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D11	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D12	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R11	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R12	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C41	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C47	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C48	Disc or Multi-Layer Ceramic 5mm Pitch
68 PF	C43	NPO Ceramic 5mm Pitch
68 PF	C44	NPO Ceramic 5mm Pitch
68 PF	C46	NPO Ceramic 5mm Pitch
1.8 PF (1P8)	C42	NPO Ceramic 5mm Pitch
1.8PF (1P8)	C45	NPO Ceramic 5mm Pitch
1 u 2 H	L16	10mm Toko style coil
1u2H	L17	10mm Toko style coil
1u2H	L18	10 mm Toko style coil

PAGE 19 Next table of components for $15 \mathrm{Mtr} \& 12 \mathrm{Mtr}$ filters with PCB/Schematic labels

COMPONENT LIST FOR 15 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D13	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D14	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R13	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R14	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C49	Disc or Multi-Layer Ceramic 5mm Pitch
100nf $(0.1$ uf - 104)	C55	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C56	Disc or Multi-Layer Ceramic 5mm Pitch
47 PF	C51	NPO Ceramic 5mm Pitch
47 PF	C52	NPO Ceramic 5mm Pitch
47PF	C54	NPO Ceramic 5mm Pitch
1.5PF (1P5)	C50	NPO Ceramic 5mm Pitch
1.5PF (1P5)	C53	NPO Ceramic 5mm Pitch
1u2H	L19	10mm Toko style coil
1u2H	L20	10mm Toko style coil
1u2H	L21	10mm Toko style coil

COMPONENT LIST FOR 12 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D15	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D16	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R15	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R16	Carbon 1/4W Resistor (see notes on page 12)
100nf (0.1uf - 104)	C57	Disc or Multi-Layer Ceramic 5mm Pitch
100nf $(0.1$ uf - 104)	C63	Disc or Multi-Layer Ceramic 5mm Pitch
100nf $(0.1$ uf - 104)	C64	Disc or Multi-Layer Ceramic 5mm Pitch
33PF	C59	NPO Ceramic 5mm Pitch
33PF	C60	NPO Ceramic 5mm Pitch
33PF	C62	NPO Ceramic 5mm Pitch
1PF	C58	NPO Ceramic 5mm Pitch
1PF	C61	NPO Ceramic 5mm Pitch
1u2H	L22	10mm Toko style coil
1u2H	L23	10mm Toko style coil
1u2H	L24	10mm Toko style coil

PAGE 20

Next table of components for the 10 Mtr filter with PCB/Schematic labels

COMPONENT LIST FOR 10 METER BAND		
VALUE	LABEL	DESCRIPTION
BA243 or 1N4148	D17	Signal switching diode (see notes on page 12)
BA243 or 1N4148	D18	Signal switching diode (see notes on page 12)
470 Ohm or 100 Ohm	R17	Carbon 1/4W Resistor (see notes on page 12)
470 Ohm or 100 Ohm	R18	Carbon 1/4W Resistor (see notes on page 12)
100 nf (0.1uf - 104)	C65	Disc or Multi-Layer Ceramic 5mm Pitch
$100 n f(0.1$ uf - 104)	C71	Disc or Multi-Layer Ceramic 5mm Pitch
100nf (0.1uf - 104)	C72	Disc or Multi-Layer Ceramic 5mm Pitch
22 PF	C67	NPO Ceramic 5mm Pitch
22PF	C68	NPO Ceramic 5mm Pitch
22PF	C70	NPO Ceramic 5mm Pitch
2.2PF (2P2)	C66	NPO Ceramic 5mm Pitch
2.2PF (2P2)	C69	NPO Ceramic 5mm Pitch
1 u 2 H	L25	10 mm Toko style coil
1u2H	L26	10mm Toko style coil
1u2H	L27	10 mm Toko style coil

COMMON COMPONENTS USED FOR ALL BANDS		
VALUE	LABEL	DESCRIPTION
390 Ohm	R19	Carbon 1/4W Resistor
390 Ohm	R20	Carbon 1/4W Resistor
10nf $(0.01 \mathrm{uf}-103)$	C73	Disc or Multi-Layer Ceramic 5mm Pitch
10nf $(0.01 \mathrm{uf}-103)$	C74	Disc or Multi-Layer Ceramic 5mm Pitch
10 uh	L28	Small axial chokes
10 uh	L29	Small axial chokes

Conclusion

Using the documentation and illustrations provided construction should present no issues. The prototype worked as expected and all coils adjusted with nice peaks and all the tuning slugs sit nicely within there cores. It is worth mentioning that the ferrite slugs in the coils break easily if not adjusted with a suitable trimming tool!

The PCB artwork is available as a separate download in my Yahoo Group BitX folder.

